Extensions 1→N→G→Q→1 with N=C22xA4 and Q=C22

Direct product G=NxQ with N=C22xA4 and Q=C22
dρLabelID
A4xC2448A4xC2^4192,1539

Semidirect products G=N:Q with N=C22xA4 and Q=C22
extensionφ:Q→Out NdρLabelID
(C22xA4):C22 = D4xS4φ: C22/C1C22 ⊆ Out C22xA4126+(C2^2xA4):C2^2192,1472
(C22xA4):2C22 = C2xD4xA4φ: C22/C2C2 ⊆ Out C22xA424(C2^2xA4):2C2^2192,1497
(C22xA4):3C22 = C2xA4:D4φ: C22/C2C2 ⊆ Out C22xA424(C2^2xA4):3C2^2192,1488
(C22xA4):4C22 = C23xS4φ: C22/C2C2 ⊆ Out C22xA424(C2^2xA4):4C2^2192,1537

Non-split extensions G=N.Q with N=C22xA4 and Q=C22
extensionφ:Q→Out NdρLabelID
(C22xA4).C22 = D4:2S4φ: C22/C1C22 ⊆ Out C22xA4246(C2^2xA4).C2^2192,1473
(C22xA4).2C22 = A4xC4oD4φ: C22/C2C2 ⊆ Out C22xA4246(C2^2xA4).2C2^2192,1501
(C22xA4).3C22 = C4xA4:C4φ: C22/C2C2 ⊆ Out C22xA448(C2^2xA4).3C2^2192,969
(C22xA4).4C22 = C24.3D6φ: C22/C2C2 ⊆ Out C22xA448(C2^2xA4).4C2^2192,970
(C22xA4).5C22 = C24.4D6φ: C22/C2C2 ⊆ Out C22xA448(C2^2xA4).5C2^2192,971
(C22xA4).6C22 = C24.5D6φ: C22/C2C2 ⊆ Out C22xA424(C2^2xA4).6C2^2192,972
(C22xA4).7C22 = C25.S3φ: C22/C2C2 ⊆ Out C22xA424(C2^2xA4).7C2^2192,991
(C22xA4).8C22 = C2xA4:Q8φ: C22/C2C2 ⊆ Out C22xA448(C2^2xA4).8C2^2192,1468
(C22xA4).9C22 = C2xC4xS4φ: C22/C2C2 ⊆ Out C22xA424(C2^2xA4).9C2^2192,1469
(C22xA4).10C22 = C2xC4:S4φ: C22/C2C2 ⊆ Out C22xA424(C2^2xA4).10C2^2192,1470
(C22xA4).11C22 = C24.10D6φ: C22/C2C2 ⊆ Out C22xA4246(C2^2xA4).11C2^2192,1471
(C22xA4).12C22 = C22xA4:C4φ: C22/C2C2 ⊆ Out C22xA448(C2^2xA4).12C2^2192,1487
(C22xA4).13C22 = A4xC42φ: trivial image48(C2^2xA4).13C2^2192,993
(C22xA4).14C22 = A4xC22:C4φ: trivial image24(C2^2xA4).14C2^2192,994
(C22xA4).15C22 = A4xC4:C4φ: trivial image48(C2^2xA4).15C2^2192,995
(C22xA4).16C22 = A4xC22xC4φ: trivial image48(C2^2xA4).16C2^2192,1496
(C22xA4).17C22 = C2xQ8xA4φ: trivial image48(C2^2xA4).17C2^2192,1499

׿
x
:
Z
F
o
wr
Q
<